ON THE STRUCTURE OF THE ELASTIC TENSOR AND THE
CLASSIFICATION OF ANISOTROPIC MATERIALS

N. I. Ostrosablin UDC 539.3

In the linear theory of elasticity the deformation energy density for anisotropic
materials has the form [1-3]

20 = A;migiErly (L)
where €ij = €3i is the deformation tensor in the orthogonal coordinate system x;, X,, X3
and Ajjkg are the components of the modulus of elasticity temsor. In (1) and below, re-

peating indices denote a summation from one to three. The constants Ajjkg have the
symmetry properties:

Agjrr = Ajing = Agjin = Apnijs (2)
which follows from the symmetry of the tensor €;; and the possibility of redefining the

summation indices in (1). We see from (2) that there are only 21 independent camponents of
Aijkz' The deformation energy (1) must be a positive definite quadratic form [1-3].

The stress tensor is determined from (1) according to the equation
G5 = 0D/de;; = Agjnitrt (3)
Equation (3), the so-called generalized Hooke's law, can be inverted:
Bij = @ik i0h 1 (4)
Here ajjkq is the compliance tensor. The constants ajjkg satisfy the symmetry conditions

(2) and are related to the Ajjke by

1
Asjitnirs = Bijrs = 5 (8irB35 + 8;565r),

Cijridrirs = az:jrm;

where 833 = 1 for i = j, 8§15 =0 for i # i. The tensor 8ijrs plays the role of a unit ten-
sor in the space of symmetric tensors of the form (2).
For an orthogonal coordinate t?ansformation
Ty = €T, Tj = C4j1, CijChj = O (5)

the tensors ejj, Ajjky transform as

! 7
£i5 == CinC;i€aly Erl == CinCji€ijy (6)
’
Aiﬁkl = €ipCiglnsC lsA;!qu!;

’
Apgrs = CipCigturCisAijni.

Because of the choice of three free parameters of cjjy as determining the position of the
coordinate system (5), the number of independent components of Ajike, characterizing the
elastic properties of the material, decreases from 21 to 18 [4]. When there are various
symmetries in the structure of anisotropic materials, the number of independent components
of Aijk2 is still smaller {1-41.

The representation of Hooke's law (3) in special bases and the range of variation of
the constants Aijkl consistent with the positive definiteness of the quadratic form (1)
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have been considered in [3-8].

In the present paper we reduce the quadratic form (1) to canonical form, which reveals
the structure of the constants Ajjkq. We also give a new classification of anisotropic
materials.

We consider six deformation tensors tjjpq. Here the first two indices denote the compo-
nents of the tensor, and the last two give tge number of the tensor, where tensors with
numbers (pq) and (gp) are identical. Therefore the tensor tijpq is symmetric with respect
to each pair of indices:

Lijpa = Yiipas Lijpa = bijaps
and hence there are only 36 independent quantities tijpq-
Consider -now the expression
Apgrs = Asjnitispatirs: (7)
By the definition of the tensor Ajjky in (3), the expression Ajjketkers represents the
components of the stress tensor 0jjrg. Further, this tensor contracts with the tensor tiipqt
Aspituirstiips = Oirstiipas
Similarly (in view of the symmetry of the tensor Aijkz) we have
Agjpitispatrirs = Oripalairs-

Hence the quantities (7) represent the contraction of the corresponding stress and deforma-
tion tensors. They are scalar and therefore are invariant to orthogonal coordinate trans-
formations of the type (5).

We choose the tensors tiqu such that

tispalizes = 6qus; (8)
A;pitijpatens = 0, (pg) 5% (rs). (9)

The condition (8) implies the orthonormality (in the sense of contraction) of the tensors
tjjpq> and also implies the orthogonality of the matrices tjjyg. Condition (9) means
that the stress tensors Oijrs» Okgpq correspond to the deformation tensors tyjrs, tijipq

and are proportional to them. Equation (8) contains 21 equations, and (9) contains 15,
and therefore we have 36 equations (8) and (9) for the 36 independent quantities t

ijpq*
It follows from (9) that JPd
Apars = 0, (pg) 5 (r9). (10)
We multiply both sides of (7) by tmnpqs tfgrs and sum over p, g, r, s:
Aijk ltiqutklrstmnpqtfgrs = qumtmnpqt?grs- (11)
It follows from (8) that
Ligpatmnpe = Oijmns atrstiars = Onise.
Now (11) takes the form
AimiSijmnOuisz = AijigBismn = Amnte = Aparstmnpatiarss
or, replacing the indices mnfg by ijk%¢, we obtain
Agjni = qurstiquthlrsv (PQ) = (r;g)' {(12)

Here we take into account (10) in the summation. Therefore if the tensor Ajskg is given,
one can determine tjjpq from (8) and (9), andthen find Apgrs from (7) ((pg) = (rs)). If
we are given the six numbers A qrs» (pq) = (rs), and the 36 quantities tjjpq, connected
by the 21 relations (8), then Brom (12) we can construct the tensor Aj:iyg, which depends
on the six quantities A, 4,.¢ and the 15 parameters of tjjpqs Which remain free parameters
after imposing the conditions (8).
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Equations (8) and (9) are invariant with respect to orthogonal coordinate transforma-
tions (5). Equation (12) also does not change in form:
A”ijhl = qurst;qut;zlrs: (pg) = ("3)
(quantities with primes are defined by (6)).

Using (12), we find the stress tensor corresponding to the deformation tensor tygmn:
Aiinituimn = Kopretiingtairetuimn = A .y (13)
ijRllElmn = pqrstiypqthlrstklmn == pqrsti]'pqars’mn = pqmnti]"pq =

Amnmntijmn for m=n,

zzmnmntijmn for m==%=n

(summation is not carried out over m and n). We see from (13) that it is proportional to
the deformation tensor:

Aiikvltklmn = Xtiimn’ (14)

and the proportionality coefficients are A = Ay (m =n) and A = 2A,, (m # n). We
rewrite (14) in the form

(Aiju — M )thimn = 0. (15)

If (15) is regarded as a system of homogeneous linear equations for the tygp,, then
this system will have a nonzero solution when its determinant vanishes [9]:

iy — Adyjpil = 0. (16)

Because the number of independent equations in (15) is only six, and the matrix of the
coefficients of (15) is symmetric, then the 9th-order determinant (16) will have identical
rows and columns with indices (ij), (ji), i # j, (k&), (&k), k # %, and therefore the 9th-
order determinant (16) is identically zero. The determinant (16) can be considered as a
6th-order determinant, where the rows and columns with indices (ji) = (2k), i # j are
eliminated. In result we obtain a 6th-order determinant whose corresponding matrix is also
symmetric, and a 6th-order equation for A, which has six real roots [9].

And so (16) is written in the form

Al—-n A 4w VIdg Va4 Va4
AR An—L 4B VI4n VIR Viag
AT AR AR VIAR  V2AR VIAG|_ (17)
V243 V243 VIAR 245%—h 243 245 '
VIAR V243 VZAR 243 2456 243
V24i VZan V245 243 245 2451

where Aﬁ{ = Ajjkg- The elements of the matrix corresponding to (17) can be denoted as Ajj,

where i, j now go from 1 to 6. The correspondence of the indices is obvious from (17).
Expanding the determinant (17), we obtain a 6th-order equation for A:

AS — T A5 LA — I A8 -T2 — T A+ Ig=0, (18)

where the coefficients Iy (k = 1, 6) are invariants of the elastic tensor Ajjke and are
given by the formulas [10, 11] '

s; 10 . . .0
|52 & 2 0. ..0 _
Li=vils, s; 8, 3 0...0} k=186,
Sy Sp—1 » - Sy

$1= ‘4ii» S == 44ii ‘4ji’ Sz = f4ij flih fihi,
sy = AjjApApid s 55 = AjjApdndimAmi
g = AijA.ikAklA lmAmnAni'
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Here summation over repeating indices goes from 1 to 6. The nonzero solutions of (15)
corresponding to the roots of (18) are orthonormal [9], i.e., they satisfy the conditions

(8).

Hence it has heen shown that there are two possibilities for determining the eigen-
values and eigentensors of the linear transformation (3): 1) the eigentensors tis q are
determined from (8) and (9), and then the eigenvalues qurs: (pg) = (rs), are determined
from (7); 2) from the characteristic equation (18) we find the six eigenvalues X = A,
for m = n, A = 2h, 00 for m # n, then for each root A the nonzero solution of the system
{15) is determined such that the orthonormality condition (8) is satisfied.

We see from (7) that the eigenvalues AP rg represent deformation energies corres-
ponding to the deformation tensor t-gpq, (pq? = (rs). But the deformation energy is a
t

i
positive definite quadratic form, and therefore is positive for any nonzero deformation

tensor. Because the tensors tjjpq are nonzero, the eigenvalues must be positive:

Apars >0, (p) = (rs)- (19)
In the deformation energy (1) we substitute (12) for the coefficients Ajjyy:

20 = A1 = Aparstispaluirs€iBrie (20)

In (20) we introduce the notation

‘ ‘gpq. = lijpgBij gra = lursEa. (21)
With (21) the deformation energy (20} can be written as ‘
20 = Aueiyen = zpqrszpq;m (pq)=(rs). (22)

From (22) we see that the deformation energy is a sum of squares of the variables ¢ g’

(pq) = (rs), with positive coefficients. Therefore (21) is an orthogonal transformation

of the variables g£33 to the variables Ep (the transformation matrix tijpq is orthogonal

in view of (8)). Tﬂis transformation brings the deformation energy (1) to canonical form
(22). 1In order for a quadratic form to be positive definite it is necessary and sufficient
that all of the eigenvalues of its matrix be positive [10]. Therefore the deformation

energy (22) is a positive definite quadratic form because in the case considered here we
have the conditions (19).

In view of the orthogonality of the matrix tijpq> the inverse of the transformation
(21) is

815 = tipaBpq- (23)
Equation (21) shows that the variable qu is the contraction of the two tensors tiipg and
?i;s i.e., it is an invariant (scalar) with respect to orthogonal coordinate transformations
5

. From (23) it is evident that the qu are the expansion coefficients of the tensor €49
with respect to the eigentensors tiqu‘

And so it has been shown that independently of the choice of the orthogonal coordinate
system, the deformation energy has the form

20 = qu;-;épqzm (pg) = (rs) (24)

and is determined by 12 invariant quantities: the six eigenvalues gpqrss (pq) = (rs), and

the six variables qu, (pq) = (qp). The quantities qu depend on the eigentensor tjjpq and

the deformation tensor €4 (see (21)) and are arbitrary, in view of the arbitrariness of
the deformation tensor ejj. For fixed €pq (for example, two materials with identical values)
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anisotropic materials will be distinguished only by the values K qrs» (pq) = (rs). Hence
the deformation energy (24) of the anisotropic material is completely characterized by the

six quantities qurs’ (pq) = (rs); they do not depend on the choice of orthogonal coordinate
system and can be called the intrinsic elastic moduli.

We write Hooke's law (3) in invariant form. Substitute (12) into (3):
Omn == qurstmnpqthlrsekl = ZPQrstmnpq;rs- (25)
We multiply (25) by tynij and sum with respect to m and n:
tmniiOmn ='A~pqrstmniitmnpq‘grs = qu;sﬁiqus':s = Aijrstre (26)
On the left-hand side of (26) let

Eij = tmnifOmn- (27)

The transformation (27) corresponds completely to the relations (21). The inverse transfor-
mation to (27) is analogous to (23):

Omn = tmnijgiﬁ
Using (27) we obtain from (26) Hooke's law in invariant form, independent of the choice of

orthogonal coordinate system:

a"ij = Ziirsg;s’ (rs) = (if). (28)
We write out (28) as:

~ ~ o~ o~ ~ o~ ~ o~
011 = A1111€110 O1a = 4119815 + A1201820

O1s = Aygrsys + A1331;311?

Op1 = 712112;12 + “szlgmv 32'2 = Zzzzzgzz,

O3 = Zzazagzs + 22332';32,?’,31 = Ay11t1 + Ayigiar,

~ ~ o~ N .~ ~
O33 = Aggp38a3 + Asa3oEs0r Oz = Agyasss.

Hooke's law (28) can be inverted to give:

~ ~ ~ ' (29)
€rs = Qrsn10g1, (K1) = (rs);
ijrs@rshl ——: 6i]"klr (I'S) = (U): (kl) = (T‘S); (30)
~ 1~ 1 o~ 4
Ti111 = = 1 Qo222 =7 Q= F (31)
1111 2222 .773333
1 ~ 1 ~ 1
2849353 = ) 201313 = 75—, 203919 = =
Z2:}523 A1313 1212
We multiply (29) by tijrs and sum with respect to r,s:
ti]'rszrs = Erskltijr;"hl- (32)
With (23) and (27) we can write (32) in the form
&;j = _ZrSkltifrstmnklUmn- (33)

Comparing (33) with (4) we obtain
Cijmn = Grsuitisrstmnnn (rs) = (kD). (34)

Hence the matrix (34) is the inverse of the matrix Ajjky of (12) and argkg is related to
qurs by (30) or (31).

Because the intrinsic elastic moduli Kp rs» (pa) = (rs) (the roots of equation (18)),
can be enumerated arbitrarily, we adopt the following convention

Ay > Ayyes > Age > 2843992 281513 3> 24,5, >0, (35)
M=M=k =020 >0

604



The correspondence of the notations in (35) is obvious.
Using the second notation of (35), we write out the components of the modulus of
elasticity tensor (12) and the coefficients of compliance tensor (34):
At = Mbijntain + Malijastrize -+ Agbijasfniss 1 {36)
+ Ay(Bijestnies + Lissabnise) = As(tisiatuns + tismbniz) +
+ xs(tinzthlm -+ tiizltklﬂ)r

1 1 o 4 .
aijr = L tijuthi + 3 Bijaeteree 5 Bissthiss + - (Fuisalrizs + Tijsafuise) +
Ay 2 3 4
1 1
* o (Gijratns + tojsitam) + 7= (Biinatens + fijartain)-
5 6
And so for any material the modulus of elasticity tensor and the compliance tensor are

given by (36), (8), and (35), and based on this, it is possible to classify anisotropic
materials according to the number of different moduli Ay and their multiplicity.

For each material we set up the symbol {a;, @y, ..., oy}, where k<6, ap > 1, o, + a, +

.. + ag = 6. Here k is the number of different eigenvalues Xj, and a; is their multi-
plicity. The materials are classified into groups (classes) according to the number of
different eigenvalues X;. The total number of groups is six, and they are subdivided into
subclasses depending on the multiplicity of the eigenvalues. We write out for these groups
and subclasses their symbols and the relations between the eigenvalues (35):

L B k=M = A3,=: Ay = h; = hg;
I 1. {1, 5} > Ay Ay = hg= Ay = Ay = g,
2, Ay e A=A Ay = Ay = Ay = Aq,
B.3) o M=k =k Sk =2~ =1,
cAh 2o b =Ry =Ry = A =Ry
B, 1} A=Ay = Ay = Ay = Ay A
{4, A e A S Ay S Ay = A, = Ay = Ay,
1,02, 3) > Ay SAy = Ay >hy = Ay = Ag,
{1, 3,2 e Ay Shy = = A, Sy = A,
L4 L M Sk =k =R =Ry Shy
42,04, 3o Ay = Ay Ay SAr= Ay = Ag,
c{2,2,2) e Ay =Ry Shy=hy Sy = Ay,
2, 3, 1) e A=Ay S Ay = Ay = Ay A
(8,1, 2y > Ay = Ay = Ay >y Shy = A,
A3 2,1} M=k =k Shy =25 Sy,
Al 1, 1) o Ay =g = Ay = Ay S Ay Shg
(1,1, 1,3} > &, >hy >h > = Ay = Ay,
C{1,1,2,2) o A S>hy SAy =4, Shy = A,
{4 1, 3, 1 e Ay Ay S Ay =y = Ay SAg,
1,2, 1, 2) o Ay Shy= Ry Sh Sy =4,
{12, 2,1} o Ay S =Ry A =2 > Ay,
(1,3, 1,1} < & >Ahy = Ay = A, >A; >hg,
2 1,1, 2) o Ay =R Ay A, S Ay = A,
{201, 2, 1) o Ay = hy S Ay Ay = Ay Shy,
42,02, 1, 1) o Ay = Ay Shy = A, Ay S A
10{&L11}@xr_g_43>m:g5>u,
Vol {1, 1,4, 1,2} > &y Ay >hy Shy Shy = g,

N

I11.

© 00 N O U W e BT W

[
o

IV.

R R R R O

2. {1,‘"1, 1, 2,_ 1} <+ Ay >k > >hy = Ay >hg
3. {1, 1, 2, 1, 1} < Ay S Ay SAy = Ay SAy >hq,
Ao {1, 2,1, 1, 1) < dy Shy =0y Shy Shy She
9. {2, 1, 1, 1, 1} = Ay =Ly Sy Shy >y A

VL {1, 4, 1, 4, 1, 1) <> & Shy Ay Sh, Sy >he
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It is evident from these relations that all materials can be classified into 32 classes
(1+5+ 10+ 10+ 5+ 1 = 32) and each to class there uniquely corresponds the symbol
{ay, @y, ..., ag} which chardcterizes the structure of the material. The order of the
numbers in the symbols is significant; upon permuting the number in the symbol we obtain a
material of a different class, with a different internal structure.

A more detailed classification of anisotropic materials can be carried out according to
the form of the eigentensors tjjpq-

For materials with the symbols {6}, {1, 5}, {5, 1} the elastic moduli (36) take the form

Aspr = Mbignys (37)
"Apgrr = M — M)tijutauy + Mabijess (38)
Asjpr = MOijnr — (Ay — Me)28i510tn 1103 (39)
and in view of (8)
Lt = 1, Gigratine = 1/2. (40)

Materials with elastic moduli given by (37) can be called isotropic, since Ajjky does
not depend on the choice of orthogonal coordinate system and is determined by one eigenvalue
A; and in this case the stress is 0335 = Aj€y4. Materials that are traditionally referred
to as isotropic form a special case of materials of the type (38).

Because the coordinate system is arbitrary, we will assume that the coordinates are
along the principal axes of the tensors tjj.; and tijiz- We denote the principal values
of these tensors by a, B, Y3 a/v2, BIV2, Y}Jé, respectively. Then condition (40) reduces

to
o + B + 97 =1 (41)
Now the elastic moduli (38) and (39) can be written as
Ay = (b — A)(@B3871 + BB1abya + ¥8:583) X (42)

X (00x181y + BOrsBia + VOrsbig) + Agbijnss -
Aspr = MOijpr — (hy — kc)(aanfsn + BOibje +

+ 7819870)(8i181x + BOraBiz - VOraBis)- (43)

Obviously materials of the type (42) and (43) are characterized by four parameters: two
eigenvalues and two of the parameters in (41). The difference between (43) and (42) is that
in (43) there is a minus sign in front of (A;— A¢). This material has a different internal
structure.

If we assume the tensors tiji1 and tjji12 are spherical, i.e., we put a = g =y = +l//§,
then (42) and (43) take the form

Aijnr = (_1/3)(7\1 — Ag)8:30n1 A Agbignis (44)
Aipmr = Mbijur — (1/8)(Ar — 1g)0:611- (45)

The materials (44) and (45) are isotropic in the sense that Ajjkg does not depend on the
coordinate system, but is determined by two eigenvalues. If in (44) we let (A — A;)/3 =

A, A, = 2y, then we have the traditional notation for the moduli of elasticity of an isotropic
material.

The materials (44) and (45) are often taken as one; this is relevant to the question of
the limits to the Poisson coefficient v [1, p. 114; 4, p. 25; 12, p. 100; 13, p. 117; 14,
p. 256]. But they are qualitatively different materials, belonging to classes with
different structural symbols {1, 5} and {5, 1}. For (44) and (45) the Poisson coefficients
are:

=2z leann - . (46)
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1
T 1,1 1) T A T (47)

Because A; > X, > 0 and A; < Ag > 0, it is evident from (46) and (47) that the Poisson coeffi-
cient lies between the following limits for (44) and (45), respectively:

0 <v <1/2; (48)
—1 <v <0. (49)

Hence the material (44) is atraditionally isotropic material whose Poisson coefficient satis-
fies (48). The material (45) is qualitatively different: wupon extension of a rod of this
material in an arbitrary direction, its transverse dimensions increase. For a material of
this type, the Poisson coefficient satisfies (49).

For (37) v = 0. The class of materials (37) in a sense lie between the class of
materials (44), which contract in the transverse dimensions upon a longitudinal extension
of a rod, and the class of materials (45), which expand in the transverse dimensions under
the same conditions.

In many texts on the theory of elasticity [1, p. 11l4; 4, p. 25; 12, p. 100: 14, p. 256]
it is stated that materials with a negative Poisson coefficient are not observed experimen-
tally. In [5] it is suggested that one look for materials with negative v by doing experi-
ments at very low temperatures, near absolute zero, and also a citation to an experiment is
given in which v = —(.102. '

The examples presented here demonstrate the usefulness of the classification of elastic
materials proposed in the present paper. In the future it will be necessary to study all
32 classes of elastic materials in more detail. In [15-17] an analogous approach was given
to the study of the structure of the generalized Hooke's law. In [16] the eigentensors
tjjpq were constructed in general form depending on 15 arbitrary parameters.
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