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In the linear theory of elasticity the deformation energy density for anisotropic 
materials has the form [1-3] 

2~ = Au~z~U~kz~ (I) 

where r  = Cj i  i s  t he  d e f o r m a t i o n  t e n s o r  in  t he  o r t h o g o n a l  c o o r d i n a t e  sys tem x l ,  x2, xs 

and Ai jks  a r e  t he  components o f  the  modulus of  e l a s t i c i t y  t e n s o r .  In  (1)  and below, r e -  

p e a t i n g  indices denote a summation from one to three. The constants Aijks have the 
symmetry properties: 

Aijkz = Ankz = Atom = Aku,~ (2) 

which follows from the symmetry of the tensor eij and the possibility of redefining the 

summation indices in (i). We see from (2) that there are only 21 independent omponents of 
Aijks The deformation energy (i) must be a positive definite quadratic form [1-3]. 

The stress tensor is determined from (i) according to the equation 

o i l =  O~/O~ij = Auk~sh~. (3) 

Equation (3), the so-called generalized Hooke's law, can be inverted: 

~ j = ' a ~ j ~ z .  (4) 

Here aijks is the compliance tensor. The constants aijks satisfy the symmetry conditions 

(2) and are related to the Aijks by 

i 
A i j k t a a l ~  ---- 8iirs = y (8~rSis ~ 81~Sjr)~ 

aij~zAk~. = 8i~r8,: 

where 6ij = i for i ffi j, 6ij -- 0 for i # j. 

sor in the space of symmetric tensors of the form (2). 

For an orthogonal coordinate transformation 

xi  =. c~jxi,, x~ = cijx~, c~jck~ = 8ik 

the tensors eij, Aijks transform as 

The tensor 6ijrs plays the role of a unit ten- 

t I 

~ij  ~" CikCJle~l, ' 8kl  ~ CikCJ leiJ~ 
? 

Atjgl ffi C~pCjqCkrClsA~qr,,; 
t 

Apqrs ~- C. ipCjqCkrC lsAijkl. 

(5) 

(6) 

Because of the choice of three free parameters of cij as determining the position of the 
coordinate system (5), the number of independent components of Aijks characterizing the 
elastic properties of the material, decreases from 21 to 18 [4]. When there are various 
symmetries in the structure of anisotropic materials, the number of independent components 
of Aijks is still smaller [1-4]. 

The representation of Hooke's law (3) in special bases and the range of variation of 
the constants Aijks consistent with the positive definiteness of the quadratic form (I) 
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have been considered in [3-8]. 

In the present paper we reduce the quadratic form (i) to canonical form, which reveals 
the structure of the constants Aijks We also give a new classification of anisotropic 
materials. 

We consider six deformation tensors tijpq. Here the first two indices denote the compo- 
nents of the tensor, and the last two give ~hd number of the tensor, where tensors with 
numbers (pq) and (gp) are identical. Therefore the tensor tijpq is symmetric with respect 
to each pair of indices: 

~i]pq = ~]~Pqt li]Pq = t~]qp~ 

and hence there are only 36 independent quantities tijpq. 

Consider now the expression 

Apqrs = Auk#uPqthl., " (7)  

By the definition of the tensor Aijks in (3), the expression Aijks represents the 

components of the stress tensor Oijrs. Further, this tensor contracts with the tensor tijpq: 

A~jhztk~rstljpq = ~s t i ]pq .  
Similarly (in view of the symmetry of the tensor Aijks we have 

A~j~t~]pqtk~n = Oklpq~irs .  

Hence the quantities (7) represent the contraction of the corresponding stress and deforma- 
tion tensors. They are scalar and therefore are invariant to orthogonal coordinate trans- 
formations of the type (5). 

We choose the tensors tijpq such that 

tijpqtijrs = ~pqrs; 
A ijhttiCvqtl~trs = O, (pq) =/= (rs). 

(8) 

(9) 

The condition (8) implies the orthonormality (in the sense of contraction) of the tensors 
tijpq, and also implies the orthogonality of the matrices tijrs. Condition (9) means 
that the stress tensors Oijrs , ~ks correspond to the deformation tensors tks , tijpq 

and are proportional to them. Equation (8) contains 21 equations, and (9) contains 15, 
and therefore we have 36 equations (8) and (9) for the 36 independent quantities tijpq~ 
It follows from (9) that 

Xpq~ = O, (pq) # (rs). (10) 

We multiply both sides of (7) by tmnpq, tfgrs and sum over p, q, r, s: 

A~jk~tiJpqtkIrstmnpq~gr8 =Apqr~m~pq~grs. ( i i )  

It follows from (8) that 

Now (11) takes the form 

Ai]kl~i]mn~kl]g = AijfgSijmn = A m n f g :  A~qr~tm~pqt/zr~ 
or, replacing the indices mnfg by ijks we obtain 

AUaz Apq~stupqt~l~s, (Pq) = (rS). (12) 

Here we take into account (i0) in the summation. Therefore if the tensor Aiiks is given, 
one can determine tiiDq from (8) and (9), and then find ~rs from (7) ((pq) ~ (rs)) If 
we are given the six numbers ~DOrS, (Pq) = (rs), and the ~6 quantities ti4~n , connected 
by the 21 relations (8), then ~rom (12) we can construct the tensor AijkE~:which depends 
on the six quantities ~Dqrs and the 15 parameters of tiiDa , which remain free parameters 
after imposing the conditions (8). ~ 
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Equations (8) and (9) are invariant with respect to orthogonal coordinate transforma- 
tions (5). Equation (12) also does not change in form: 

A~m = A~q~t~r , (pq) = (rs) 

( q u a n t i t i e s  w i t h  p r imes  a r e  d e f i n e d  by ( 6 ) ) .  

Using (12), we find the stress tensor corresponding to the deformation tensor tks 

Aiihlthlmn = Apq~tilpqtklrstklmn = Apqrsti~pq6rsmn = Apqmnt i~q  = ( 1 3 )  

IAmnmnt i imn ~ r  m ~ R~ 

I t2Amnmntijmn ~r m =~ n 

(summation is not carried out over m and n). We see from (13) that it is proportional to 
the deformation tensor: 

At~tt~zmn = XtUmn, (14 )  

and t h e  p r o p o r t i o n a l i t y  c o e f f i c i e n t s  a r e  X = Amnmn (m = n)  and X = 2~mnmn (m # n ) .  We 
rewrite (14) in the form 

( A u ~ - - ~ 3 t ~ t m ~  = 0. (15) 

If (15) is regarded as a system of homogeneous linear equations for the tks , then 
this system will have a nonzerosolution when its determinant vanishes [9]: 

lA:~z - -X~i j~]  = 0. (16)  

Because the number of independent equations in (15) is only six, and the matrix of the 
coefficients of (15) is symmetric, then the 9th-order determinant (16) will have identical 
rows and columns with indices (ij), (if), i ~ j, (ks (s k # s and therefore the 9th- 
order determinant (16) is identically zero. The determinant (16) can be considered as a 
6th-order determinant, where the rows and columns with indices (ji) = (s i # j are 
eliminated. In result we obtain a 6th-order determinant whose corresponding matrix is also 
symmetric, and a 6th-order equation for ~, which has six real roots [9]. 

And so (16) is written in the form 

�9 - -  1 1  -'4111 - -  ~% A~ 1 . Ansa  V 2 A 2 a  V ~Allxa 

- aa -Aaa - -  X V 2  V 2  1, 
~ f 2 A u  - -  .*~ ~ aa 2A2a--~  2A,a 

-- la - A l a  la 2A~a 

~r~Ai  i ]/7~A~ ]/'~ A~  2A~ 2Ai~ 

- A  n ~f2 12 
-- A22 ~f2 12 
- -  3 3  ~f2 A,2 

= 0t 2Ai  
2A i 

2A]~ - -  X 

(17) 

where ~{ = Aijks The elements of the matrix corresponding to (17) can be denoted as Aij, 

where i, j now go from i to 6. The correspondence of the indices is obvious from (17). 
Expanding the determinant (17), we obtain a 6th-order equation for X: 

~ - - I ~ 5 + I ~ 4 - - I ~ + I 4 ~ 2 - - I ~ + I 6  = 0 ,  ( 1 8 )  

where the coefficients I k (k = I, 6) are invariants of the elastic tensor Aijks and are 
given by the formulas [i0, Ii] 

sl t 0 . . ! ]  
s 2 s, 2 0 

I k = ~ .  s,. . .s 2. s,. .3 .  0 .. , k----t,--6, 

Ish sh-1 . . . .  Sll 
st ~ At: , s a = Aiy Ajt , s a = Aij Aya Aki, 

s, = A iiAIaAktA u, s~ = AijAyhAhzA zmAm~, 

s6 = A uA ~kA~zA ~mAmnA m. 
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Here summation over repeating indices goes from i to 6. The nonzero solutions of (15) 
corresponding to the roots of (18) are orthonormal [9], i.e., they satisfy the conditions 
(8). 

Hence it has been shown that there are two possibilities for determining the eigen- 
values and eigentensors of the linear transformation (3): i) the eigentensors tiiDa are 
determined from (8) and (9), and then the eigenvalues ~DQrS, (Pg) = (rs), are determined 
from (7); 2) from the characteristic equation (18) we fl~d the six eigenvalues ~ = ~mnmn 
for m = n, X = 2~mnmn for m # n, then for each root X the nonzero solution of the system 
(15) is determined such that the orthonormality condition (8) is satisfied. 

We see from (7) that the eigenvalues ~DQrS represent deformation energies corres- 
ponding to the deformation tensor tijpq, (pq~-= (rs). But the deformation energy is a 
positive definite quadratic form, and therefore is positive for any nonzero deformation 
tensor. Because the tensors tijpq are nonzero, the eigenvalues must be positive: 

7 p q , ,  > O, (pq) = (r@. ( 1 9 )  

In the deformation energy (i) we substitute (12) for the coefficients AijkK: 

2~ = Au~zeUskl = Apqr~tupqtatrs~U~k~. 

In (20) we introduce the notation 

(20) 

r  = tijpqsi~, ~,8 = t~,,8shz; (21)  

With (21) the deformation energy (20) can be written as 

2r = A~,tsi~ahz = Apq~spqr (pq) = (rs) .  (22)  

From (22) we see that the deformation energy is a sum of squares of the variables ~pq, 
(pq) = (rs), with positive coefficients. Therefore (21) is an orthogonal transformation 
of the variables eij to the variables E (the transformation matrix t i. is orthogonal P~ JPq 
in view of (8)). This transformation brlngs the deformation energy (i) to canonical form 
(22). In order for a quadratic form to be positive definite it is necessary and sufficient 
that all of the eigenvalues of its matrix be positive [i0]. Therefore the deformation 
energy (22) is a positive definite quadratic form because in the case considered here we 
have the conditions (19). 

In view of the orthogonality of the matrix tijpq , the inverse of the transformation 
(2i) is 

au = tupq~pq. (23)  

Equation (21) shows that the variable ~pq is the contraction of the two tensors tijpq and 

eli, i.e., it is an invariant (scalar) with respect to orthogonal coordinate transformations 
(5~. From (23) it is evident that the ~pq are the expansion coefficients of the tensor g ij 
with respect to the eigentensors tijpq. 

And so it has been shown that independently of the choice of the orthogonal coordinate 
system, the deformation energy has the form 

2 ~  = A p q ~ p ~ r s ,  (Pq) = (rs) (24)  

and i s  d e t e r m i n e d  by 12 i n v a r i a n t  q u a n t i t i e s :  t h e  s i x  e i ~ e n v a l u e s  Apqrs ,  (Pq)  = ( r s ) ,  and 

the six variables Epq, (pq) = (qp). The quantities Epq depend on the eigentensor tijpq and 

the deformation tensor eij (see (21)) and are arbitrary, in view of the arbitrariness of 
the deformation tensor eij' For fixed Epq (for example, two materials with identical values) 
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anisotropic materials will be distinguished only by the values ~pqrs, (Pq) = (rs). Hence 
the deformation energy (24) of the anisotropic material is completely characterized by the 
six quantities ~pqrs, (Pq) = (rs); they do not depend on the choice of orthogonal coordinate 
system and can be called the intrinsic elastic moduli. 

We write Hooke's law (3) in invariant form. Substitute (12) into (3): 

Omn = A pqrstmnpqt~ t r s e h  ~ = A p q r s t m n p q ~ r s .  (25)  

We multiply (25) by tmnij and sum with respect to m and n: 

tmni~m.n ='Apqrs~mni]~mnpqSr~ = Apqrs~ijpqSrs = A ijrsSrs. (26) 

On the left-hand side of (26) let 

The transformation (27) corresponds completely to the relations (21). 
mation to (27) is analogous to (23): 

Using (27) we obtain from (26) Hooke's law in invariant form, 
orthogonal coordinate system: 

~ = A u ~ ,  (rs) = (q) .  

We w r i t e  o u t  ( 2 8 )  a s :  

(27) 

The inverse transfor- 

independent of the choice of 

(28) 

~11 : ~llll~ll, ; 1 2  : A1212~12 4- A1221721, 

~23 = X2828~23 2[- "A2332~2, '~31 = ~3113"~18 2t~ "43131~81t 

Hooke's law (28) can be inverted to give: 

er~ = ars~lOkt, (kl) ---- (rs); 

Aii .sarskz  - -  6ij~z, (rs) = (i]), (kI) ---- (rs); 
~ t ~ t ~ t 
G:Illl : ~ 1 1 1  ~ a2222 : ~ a3333 : ~ %  A2222 ~ A3333 

~ . 1 2alslS = t ~ t 
2a~3~a = 2~23---- ~ ,  2~131--- ~ ,  2a121~ = 2A~l~~ - 

( 2 9 )  

(30) 

(31) 

We multiply (29) by tijrs and sum with respect to r,s: 

t U rn ,  = ar~k #Ur,Ok,. (32) 

With  ( 2 3 )  and  ( 2 7 )  we can  w r i t e  ( 3 2 )  i n  t h e  f o r m  

e u  = a ~ k  #Ur~tm~h z~m~. ( 3 3 )  

Compar ing  ( 3 3 )  w i t h  ( 4 )  we o b t a i n  

aijrnn ="ars~ttijrst,nn~z, (rs) = (kt). ( 3 4 )  

Hence the matrix (34) is the inverse of the matrix kijkE of (12) and arsks is related to 
~pqrs by (30) or (3i). 

Because the intrinsic elastic moduli ~pqrs, (Pq) = (rs) (the roots of equation (18)), 
can be enumerated arbitrarily, we adopt the following convention 

A n n  ~> A~22 >~ -43a3a ~> 27232a ~> 2-41313 >~ 2-412n > 0,, ( 3 5 )  

~I ~> i~2 ~> ~'3 ~> L4 ~> ~5 7> ~,o > 0. 
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The correspondence of the notations in (35) is obvious. 

Using the second notation of (35), we write out the components of the modulus of 
elasticity tensor (12) and the coefficients of compliance tensor (34): 

A~ih~ = ~lt~inthzn @ ~,2$ij22th122 -~ ~3tij33t~33 + 

--5 

(36) 

And so for any material the modulus of elasticity tensor and the compliance tensor are 
given by (36), (8), and (35), and based on this, it is possible to classify anisotropic 
materials according to the number of different moduli I k and their multiplicity. 

For each material we set up the symbol {~i, ~2, -.., ak}, where k!6, ak ~ I, ~l + ~2 + 
''" + ~k = 6. Here k is the number of different eigenvalues ii, and ai is their multi- 
plicity. The materials are classified into groups (classes) according to the number of 
different eigenvalues Xi. The total number of groups is six, and they are subdivided into 
subclasses depending on the multiplicity of the eigenvalues. We write out for these groups 
and subclasses their symbols and the relations between the eigenvalues (35): 

II. t .  {t, 5 } - * ' - " ~ > ~  = ~a.= ~ = ~ = ~s,: 

2, {2, 4} ++ ~1 = ~2 >Xa = ~'4 = ~s = ~'s,: 
3. {3, 3 } ~ l = X ~ = ~ s > ~ 4 = ~ 5 = ) % , :  

4. {4, 2} ~-~ ~1 ~ = ~3 =~'4 >~'6 = ~',, 

5. {5, t } - ~  X~ = X~ = X3 = ~ = X5 >~,s ;  

2. {I, 2, 3} ++ Xl >)~2 = )~3 > ) ~  = ;% = )~e,~ 

3. {1, 3, 2}  +-,- ~1 > ~ 2  = ~s = X4 > ~ 5  = X6, 
4. { t ,  4, t}  ++ ~1 > ) ~  = )~a = ~ = i% > i%,  

5. {2, 1, 3} ~ iV, = Jr= > ) ~  8 > ~ 4 " =  )~5 = )~6,, 

6. {2, 2, 2} +-,- )~, = ;~ >~'a = i% >~'5 = )~s,: 

7. {2, 3,, t} ~ ~1 = ~2 > X a  = ;~4 = ;~5 :>~s, 

8. {3, l ,  2 } +-,- ~1 = iv~ = ~a > X~ >),~ = ~'s, 
9. {3, 2, i } + + ~ , , = X = = X a > Z ~ = . ~ > Z , ,  

t0. {4, 1, 1} +-,- Xz = X= = ;~3 = , ;q  >X~ > ~ s ;  

3. {I, t ,  3, 1} ~ ~1 > ~ 2  > } ' 3  = ~4 = )k5 >~6 , :  
4. {t, 2, 1, 2} ++ )h >&, . '=  ~a > ~  > ~  = ~ ,  

5. {1, 2, 2, 1} +-,- X~ >~2  = ~3 >-"~ = )~ > ~,: 
6. {1, 3, t ,  t }  +-,- ~ > ~  = X a = )~ > ~  >X6~ 

7. {2, t ,  t ,  2} ~ X~ = ;~ > X  a > ~  >.~,~ = Xs, i 
8. {2, t ,  2, t }  + + ~  = ~ >.X a > ~  = ~ >X~,: 

9. {2, 2, 1, 1} +-~ ~1 : ~'2 >~'3 -~' ~'4 > '~5 >~6r  

1. {t, 1, t ,  t ,  2}++ ;~, > ~  > X  a >iv~ >) ,~  = ~ ,  

2. {1,. t ,  t ,  2, t} ++ X x > ~  >~'a >~-~ = ;~ > ~ , :  

3. {I, t ,  2, i ,  t} ~-~ ~ > ;% > ~ s  = ~ > ~ 5  >i%,: 
4. {1, 2, t ,  i ,  I} ++ 9~ > ~  = ~ s  > ~  > ) ~  > 2 ~ ,  

5. {2, 1, t ,  1, t} ++ ~ = ~ >~3  > ; ~  > ~  >;~e; 
VI. {1, t ,  1, t ,  t ,  t} ++ ~,z >9~  > ;% > ~  >X~ >;%.  

III.  

IV. 

V. 
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It is evident from~these relations that all materials can be classified into 32 classes 
(i + 5 + i0 + 10 + 5 + 1 = 32) and each to class there uniquely corresponds the symbol 
{~I, ~2, --., ~k} which characterizes the structure of the material. The order of the 
numbers in the symbols is significant; upon permuting the number in the symbol we obtain a 
material of a different class, with a different internal structure. 

A more detailed classification of anisotropic materials can be carried out according to 
the form of the eigentensors tijpq. 

For materials with the symbols {6}, {I, 5}, {5, i} the elastic moduli (36) take the form 

and in view of (8) 

A u ~ z  = XzS~s~z; . 

A ~S~ l = ~,zSu~,l -- (Lx -- L~)2tuz~t~ ~ ;  

t~n l t u z  z = l ,  t u z~ tuz  ~ = t/2.  

( 37 )  

(38)  

( 39 )  

(4o) 

Materials with elastic moduli given by (37) can be called isotropic, since Aijks does 
not depend on the choice of orthogonal coordinate system and is determined by one eigenvalue 
X I and in this case the stress is oij = lleii. Materials that are traditionally referred 
to as isotropic form a special case of materials of the type (38). 

Because the coordinate system is arbitrary, we will assume that the coordinates are 
along the principal axes of the tensors ti~l• and ti41x. We denote the principal values 
of these tensors by =, 6, Y; ~/v~, 8/V~, y~v~, respectively. Then condition (40) reduces 

to 

~ + ~2 + ?~ : i .  (41) 

Now the elastic moduli (38) and (39) can be written as 

x (=Sk~Sll + ~Sk,Sz~ + 78k38~3) + X~SU~; 
Aukl = X~8~s~z- (Xz " ~)(=8~zSsz + ~8nas, + 

+ ySi88~)(~a~zS~i + ~8~81, + ?~sS~). (43) 

Obviously materials of the type (42) and (43) are characterized by four parameters: two 
eigenvalues and two of the parameters in (41). The difference between (43) and (42) is that 
in (43) there is a minus sign in front of (lz- ~6). This material has a different internal 

structure. 

If we assume the tensors tij11 and tijz2 are spherical, i.e,, we put = = ~ = y = +I/V~, 
then (42) and (43) take the form- 

Aukl = ( i / 3 ) (X ,  - -  ~2)SuSk~ .+ X28ukz; ( 4 4 )  

A,S~ ~ = XZSUk i -- (I/3)(Xz -- Xe)SUSk i- (45) 

The materials (44) and (45) are isotropic in the sense that Aijks does not depend on the 
coordinate system, but is determined by two eigenvalues. If in (44) we let (X I - X2)/3 = 
l, 12 = 2B, then we have the traditional notation for the moduli of elasticity of an isotropic 

material. 

The materials (44) and (45) are often taken as one; this is relevant to the question of 
the limitsto the Poisson coefficient ~ [i, p. 114; 4, p. 25; 12, p. 100; 13, p. 117; 14, 
p. 256]. But they are qualitatively different materials, belonging to classes with 
different structural symbols {i, 5} and {5, i}. For (44) and (45) the Poisson coefficients 

are: 

!(• • 
3 kkl--XsJ . Xl--Xs . (46) 

606 



--~ 

i !f• ~i+24" (47) 

Because %1 > %2 > 0 and 41 < %G > 0, it is evident from (46) and (47) that the Poisson coeffi- 
cient lies between the following limits for (44) and (45), respectively: 

0<v <I12; (48) 

--i <w <0. (49) 

Hence the material (44) is a ~aditionally isotropic material whose Poisson coefficient satis- 
fies (48). The material (45) is qualitatively different: upon extension of a rod of this 
material in an arbitrary direction, its transverse dimensions increase. For a material of 
this type, the Poisson coefficient satisfies (49). 

For (37) v = 0. The class of materials (37) in a sense lie between the class of 
materials (44), which contract in the transverse dimensions upon a longitudinal extension 
of a rod, and the class of materials (45), which expand in the transverse dimensions under 
the same conditions. 

In many texts on the theory of elasticity [I, p. 114; 4, po 25; 12, p. i00; 14, p. 256] 
it is stated that materials with a negative Poisson coefficient are not observed experimen- 
tally. In [5] it is suggested that one look for materials with negative ~ by doing experi- 
ments at very low temperatures, near absolute zero, and also a citation to an experiment is 
given in which ~ =-0.102. 

The examples presented here demonstrate the usefulness of the classification of elastic 
materials proposed in the present paper. In the future it will be necessary to study all 
32 classes of elastic materials in more detail. In [15-17] an analogous approach was given 
to the study of the structure of the generalized Hooke's law. In [16] the eigentensors 
tijpq were constructed in general form depending on 15 arbitrary parameters. 
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